

Ministero dell'Università e della Ricerca

Towards a Synergistic human-machine Interaction and Collaboration

Roberto Pellungrini Scuola Normale Superiore

Three Learning Paradigms

Punzi C., Pellungrini R., Setzu M., Giannotti F., Pedreschi D., **AI, Meet Human: Learning Paradigms for Hybrid Decision Making Systems**, Under revision at ACM Computing Surveys, 2023.

Ensemble Counterfactual Explanations for Churn Analysis

CUSTOMER CHURN

Customer churn is the percentage of customers who stopped purchasing a company business's products or services during a certain period of time

Evaluation from questions

Q.1: How minimal are the changes required to retain potentially churning customers?

Q.3: Does the counterfactual explanation suggests changes that are easy for the churn officer to propose?

$$Proximity_{L2} = \sqrt{\frac{m-h}{m} \sum_{i \in \text{cont}} (x'_i - x_i)^2 + \frac{h}{m} \sum_{j \in \text{cat}} \delta(x'_j, x_j)}$$

Sparsity = $\frac{\sum_{i=1}^{n} (x'_i \neq x_i)}{n}$

Q.2: Is the counterfactual explanation similar to a non churning customer in the data and thus justifiable to the customer?

$$ext{Plausibility} = \sqrt{\sum_{i=1}^d (x_i' - x_{ ext{nearest},i})^2}$$

Q.4: Do the counterfactuals produced provide different courses of action for the churn officer?

$$\text{Diversity} = \frac{1}{N} \sum_{i=1}^{N} \frac{1}{n_i(n_i - 1)} \sum_{j \neq k} d(x_j, x_k)$$

Putting things together

- Four Counterfactual Generation Methods
- Ensemble of Counterfactual Sets
- Linear combination Evaluation Score
- Selection of top K Counterfactual Examples
- Allows a diverse sets of counterfactual explanations for a given instance
- Weights can be tweaked by the user to select the counter-exemplars with the desired

properties for user segmentation

Guidotti, R., Ruggieri, S. (2021). Ensemble of Counterfactual Explainers. In: Soares, C., Torgo, L. (eds) Discovery Science. DS 2021. Lecture Notes in Computer Science(), vol 12986. Springer, Cham. https://doi.org/10.1007/978-3-030-88942-5_28

Results

CreditScore Gender Age Tenure Balance NumOfProducts HasCrCard IsActiveMember EstimatedSalary Churn 650 1 30 6 0 1 0 0 67997 1

Counterfactual Instances

- CF_1 : Tenure $+1 \rightarrow$ Churn = 0
- CF_2 : CreditScore -157, NumOfProducts +1, EstimatedSalary -2181 \rightarrow Churn = 0
- CF_3 : HasCrCard $+1 \rightarrow$ Churn = 0
- CF_4 : CreditScore -300, NumOfProducts +1, EstimatedSalary -2807 \rightarrow Churn = 0
- CF_5 : Tenure +3, EstimatedSalary -67997 \rightarrow Churn = 0

Tonati S., Pellungrini, R., Di Vece, M., Giannotti, F., (2024). **Ensemble Counterfactual Explanation for Churn Analysis.** Accepted at Discovery Science 20204

Interpretable & Fair Mechanisms for Abstaining Classifiers (IFAC)

- Classifiers rejecting instances based on uncertainty of predictions (depending on coverage)
- Common approach: prediction probability as proxy for certainty

Can we extend the selective classification framework?

Classifier rejecting instances based on unfairness of predictions

Possibilities:

- Pass rejected instances on to human-in-the loop to examine (EU AI Act)
- Give explanation behind rejection, for better informed fairness judgements

Age: 60 - 69 Sex: Female Race: White Marital Status: Married Education: High School Diploma Workinghours: 40-49 Workclass: Private Occupation: Sales Prediction = Low Income Prediction Probability = 52% Not sufficiently certain -> Reject

How IFAC is trained

- 1. Train Black Box Classifier on Data (BB)
- 2. Learn Discriminatory Associations in BB
- Decide Parameters for Local Fairness Check (Situation Testing algorithm)
- 4. Estimate (un)certainty thresholds

	Certain Uncertain		
Fair	Predict	Reject	
Unfair	Reject	Intervene	
t_fair_ce	ertain, t_unfair	_certain	

How IFAC works

Base Classifier Prediction

Global Fairness Check

Predicted Label: Low Income Prediction Probability: 0.7417

A	-Risk of Discrimination
sex =	Female AND age = 60 -
69 AN	ND occupation = Sales

race = Black AND education = Master AND age = 50-59

sex = Female AND race = Other AND occupation = Engineering

At-Risk of Favouritism

sex = Male AND race = White AND education = Bachelor AND workinghours = More than 50

sex = Male AND race = White AND education = Master

	Local Fa	airness Ch	neck	
Predicti	ons for simila	ar instance	es 'White &	& Male'
M. Status	Education	W.Hours	W.Class	Pred.
Married	High School	40-49	Private	High
Married	High School	40-49	Private	High
Divorced	High School	40-49	Private	Low
Prediction	s for similar i	nstances	NOT 'Whit	e & Male'
M. Status	Education	W.Hours	W.Class	Pred.
Married	High School	40-49	Private	Low
Widow	High School	40-49	Private	Low
Married	High School	30-39	Private	Low

Individual Discrimination Score = (2/3) - (0/3) = 2/3

Prediction Probability = 0.7417
Probability lays above certainty threshold for unfair predictions
Unfair + Certain Prediction: REJECT!

Fairness improvements

Explanation

age: 30-39 marital status: Married education: *High School* workinghours: 20-39 workclass: private occupation: Management race: Black sex: Female High Income Rates Similar white men: 6/10 Similar non white men: 2/10

- 4/6 of white men with high income have a Bachelor

- 6/6 work at least 40-49 hours

age: 30-39 marital status: Married education: Bachelor Degree workinghours: 40-49 workclass: private occupation: Management race: Black sex: Female Similar white men: 9/10 Similar non white men: 3/10 - all of them share instance's education, workinghours, marital status

workclass

- Two instances falling under same possibly discriminated subgroup
- Human-in-the loop gets to make *final* decision

Lenders, D., Pugnana, A., Pellungrini, R., Calders, T., Pedreschi, D., Giannotti, F. (2024). **Interpretable and Fair Mechanisms for Abstaining Classifiers**. In: Bifet, A., Davis, J., Krilavičius, T., Kull, M., Ntoutsi, E., Žliobaitė, I. (eds) Machine Learning and Knowledge Discovery in Databases. Research Track. ECML PKDD 2024. Lecture Notes in Computer Science(), vol 14947. Springer, Cham. https://doi.org/10.1007/978-3-031-70368-3_25

Future Works

