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We need good catalysts to:

 Generate 𝐻!

Capture  𝐶𝑂!

Reduce the environmental cost of many energy 
intensive  chemical processes

All of this should be done at an industrial scale



150 million tons of 
Ammonia per year 
produced via the Haber–
Bosch process

Consumes 2% of the world energy supply

Responsible for 1.6% of world CO ! emission



The ammonia cycle



Industrial catalysis takes place at high temperature  and  pressure.

Experiments are difficult  

Modeling the high temperature reactive environment of a catalyst is challenging

The operando behaviour  is inferred  from low temperature experiments and theory

The challenge



Unravelling the workings of a 
catalyst in operando conditions 

through machine-learning 
accelerated molecular dynamics

ML-based interatomic 
potentials Study large systems (>1k atoms) on long 

time scales (> 100 ns) with DFT accuracy 

AI comes to the rescue





Combine machine learning, enhanced sampling and active learning (AL) to construct training datasets for 
reactive potentials in a data-efficient way

Gaussian Processes

Graph Neural Networks

Data-efficient machine learning potentials

Build uniformly accurate MLP along 
reactive pathways with just ~ 1k 

reference calculations
per reaction step

Standard         Data Efficient

NH3 decomposition      110000 (Fe)           5000 (FeCo) 

Lateral interactions      230000 (Fe)           8000 (FeCo) 

20-30x less calculations!

Perego & Bonati, ChemRxiv (2024)



How do we learn  efficiently  ML potentials for 
atomistic systems with few and/or costly reference 

data?

Leverage the availability of large datasets

•"Foundation models" based on graph neural 
networks (GNNs) trained, e.g. on the OC20 dataset

• Not easy to fine-tune them to specific systems

Transfer learning from atomistic foundation models

Falk, Bonati, Novelli, Parrinello, Pontil, NeurIPS 2023

e.g. OPEN CATALYST: 
270 millions of DFT calculations



a. Extract a representation from a pre-trained GNN atomistic foundation model
b. Learn energy and forces for MD via large-scale kernel techinques

Fine tuning of atomistic foundation models for molecular dynamics

Jorro, Novelli, Bonati, Meanti, Rosasco, Parrinello, Pontil, in preparation

Accurate and data-efficient 
force predictions

Requires ~seconds 
to fine-tune models

Reliable MD simulations with just a 
handful of training samples



Learning dynamics from static calculations
Langevin dynamics Biased Langevin dynamics 

Large scale dataset : chignolin miniprotein foldingNeural Network to get
 actual dynamics

Validation on a toy model :



Computational Design of PET Degrading Enzymes 

MHETase shows a strong ability to degrade the PET monomer 
at room temperature, converting it back into the precursors used 

in PET production1

Designing mutations to stabilize the Transition State 
Ensemble via a ML-based committor function2  

MHETase
[1]  ACS Catal. 2021, 11, 10416 [2] Nat. Comput. Science 2024, 4, 451


