

Learning adjustable autonomy policies in Multi Human-Al agent Reinforcement Learning

> Luca locchi Fabio Patrizi (and many others)

Sapienza University of Rome

MOTIVATION

- Multi-agent systems (Human-AI)
- Human-AI policies: joint state -> joint actions
- Multi-Agent Reinforcement Learning
- Policy repair

Adjustable autonomy in HAI = HAI policy repair switching responsibility between humans and AI

BUILDING BLOCKS

- Human-AI Decision Processes
- Hierarchical Reinforcement Learning
- Model-based Reinforcement Learning
- Trust Factors
- Strategy Repair

MULTI-AGENT DECISION PROCESSES

Source

- Markov Games: $(\mathcal{P}, \mathcal{S}, \{\mathcal{A}\}_i, \mathcal{R}, \mathcal{T})$
 - \circ **\mathcal{P}** set of n agents
 - \circ **S** set of state (s₁,s₂,...,s_k)
 - \mathcal{A} set of joint actions $(\mathcal{A}_1 \times \mathcal{A}_2 \times ... \times \mathcal{A}_n)$
 - $\circ \quad \mathcal{R}: \mathcal{S} \times \mathcal{A} \times \mathcal{S} \rightarrow \mathbb{R} \text{ reward function}$
 - $\mathcal{T}: \mathcal{S} \times \mathcal{A} \times \mathcal{S} \rightarrow [0,1]$ transition function
- Dec-POMDPs: $(\mathcal{P}, \mathcal{S}, \{\mathcal{A}\}_i, \mathcal{R}, \mathcal{T}, \{\mathcal{O}\}_i)$
 - $\circ \quad \boldsymbol{\mathcal{O}}_i \text{ observation of agent } i$

HUMAN-AI DECISION PROCESSES

Human-Al Decision Process:

$(\boldsymbol{\Theta}_{\mathsf{H}}, \boldsymbol{\Theta}_{\mathsf{A}}, \boldsymbol{\mathcal{S}}, \boldsymbol{\mathcal{R}}, \boldsymbol{\mathcal{T}}, [\boldsymbol{\mathcal{C}}], [\boldsymbol{\mathscr{V}}])$

- $\boldsymbol{\Theta}_{H}$ human agents: $(\boldsymbol{S}_{H}, \boldsymbol{\mathcal{A}}_{H}, \boldsymbol{\mathcal{O}}_{H})$
 - $S_{\rm H}$ set of states (human)
 - \mathcal{A}_{H} set of actions (human)
 - *O*_H observation (human)
- $\boldsymbol{\Theta}_{A}$ artificial agents: $(\boldsymbol{S}_{A}, \boldsymbol{\mathcal{A}}_{A}, \boldsymbol{\mathcal{O}}_{A})$
 - S_A set of states (AI)
 - \mathcal{A}_A set of actions (AI)
 - $\bullet \quad \mathcal{O}_{\mathsf{A}} \text{ observation (AI)}$
- \boldsymbol{S} set of state $(s_1, s_2, ..., s_k)$ (environment)
- $\circ \quad \mathcal{R}: \mathcal{S} \times \mathcal{A} \times \mathcal{S} \rightarrow \mathbb{R} \text{ reward function}$
- $\circ \quad \mathcal{T}: \mathcal{S} \times \mathcal{A} \times \mathcal{S} \rightarrow [0,1] \text{ transition function}$
- C: (optional) communication channel
- 6: (optional) belief function

HUMAN-AI POLICY

- Human-Al Policy
 - $\sqcap: \mathcal{O}_{\mathsf{H}} \times \mathcal{O}_{\mathsf{A}} \times [\mathcal{C} \times \mathscr{C}] \twoheadrightarrow \mathscr{A}_{\mathsf{H}} \times \mathscr{A}_{\mathsf{A}}$
- Autonomy: balance among actions in $\mathcal{A}_{H} \times \mathcal{A}_{A}$
- Policy synthesis through MARL
- Policy repair $\Pi_1 \rightarrow \Pi_2$
- Adjustable autonomy: policy repair $\Pi_1 \rightarrow \Pi_2$ with different balance of autonomy
- Learning adjustable autonomy policies through Model-based MARL on HAIDP for policy repair

ON-GOING WORK

Hierarchical RL

- Exploiting Multiple Abstractions in Episodic RL via Reward Shaping. AAAI 2023
- Realizable Abstractions: Near-Optimal Hierarchical Reinforcement Learning. Submitted to NeurIPS 2024
- Deep Abstractions for Tabular Reinforcement Learning. Work in progress

Model-based RL

- Model-Based Reinforcement Learning in Discrete Non-Markovian Reward Decision Processes. Submitted to AAAI 2025
- Multi-Agent Model-Based Reinforcement Learning in Discrete Non-Markovian Reward Decision Processes. 1st International Workshop on Adjustable Autonomy and Physical Embodied Intelligence (AAPEI 24) ECAI Workshop.

ON-GOING WORK

HAI MARL

- Towards computational models for reinforcement learning in human-AI teams. 2nd International Workshop on Multidisciplinary Perspectives on Human-AI Team Trust (HAI 2023)
- Modeling a Trust Factor in Composite Tasks for Multi-Agent Reinforcement Learning. HAI 2024
- Developing Targeted Communication through a Trust Factor in Multi-Agent Reinforcement Learning. 3nd International Workshop on Multidisciplinary Perspectives on Human-AI Team Trust (HHAI 2024)

Policy repair

- Strategy Repair in Reachability Games. **ECAI 2023**
- Towards Strategy Repair for Adjustable Autonomy. 1st International Workshop on Adjustable Autonomy and Physical Embodied Intelligence (AAPEI 24) ECAI Workshop.
- Strategy Repair for Probabilistic Games. Submitted to AAAI 2025

RESULTS SO FAR

- Theoretical analysis and experimental evaluation of abstractions in HRL
- Novel algorithms for model-based (MA)RL in NMRDP
- Novel models for representing trust factors in HAI teams
- Novel algorithms for strategy repair

RESULTS (model based MARL)

RESULTS (modelling trust factors)

With CTF: green waits for orange to open the door

Without CTF: green tries to reach the blue button

CONCLUSIONS

Learning adjustable autonomy in HAI teams

- new perspective (human-centred AI vs. autonomous systems)
- long-term research combining many aspects of the problem
- there is a roadmap !
- community effort (involve more researchers)