

Spoke 4 Adaptive Al

Nicola Gatti Politecnico di Milano

People

Boccon	
DUUUUII	

Scientific Sector	Critical mass	RTDA
Computer engineering	16	6
Control engineering	3	1
Bioengineering	2	1
Mathematical engineering	2	1
Philosophy	1	1
Electronic engineering	1	
Energy engineering	1	
Computer science	1	

Scientific Sector	Critical mass	RTDA
Theoretical physics	2	1
Statistics	1	1
Economic statistics	1	
Bioengineering	1	

∧I Seminars: 2023

- 22 seminars in 2023 (one seminar every 2 weeks)
- speakers: every researcher working in/with AI
- guest speakers: MIT, Cambridge, Pompeu Fabra
- open to: students, PhDs, industries
- >100 physical attendees per seminar
- online streaming on YouTube channel

Adaptive Al

Adaptivity The algorithm changes its behavior

Adaptive Al

Adaptivity The algorithm changes its behavior

Why? Several reasons

Adaptive Al

Adaptivity The algorithm changes its behavior

Why? Several reasons

agent level: the agent's goals change or new information is collected

Adaptive Al

Adaptivity The algorithm changes its behavior

Why? Several reasons

Online learning

- The learner collects information during its execution
- *Exploration* and *exploitation* are simultaneous
- The learner adapts its decision to the acquired information dealing with uncertainty
- Applications: *advertising*, *pricing*

agent level: the agent's goals change or new information is collected

Adaptive Al

Adaptivity The algorithm changes its behavior

Why? Several reasons

agent level	system level

agent level: the agent's goals change or new information is collectedsystem level: the performance of the system is degrading

Adaptive Al

Adaptivity The algorithm changes its behavior

Why? Several reasons

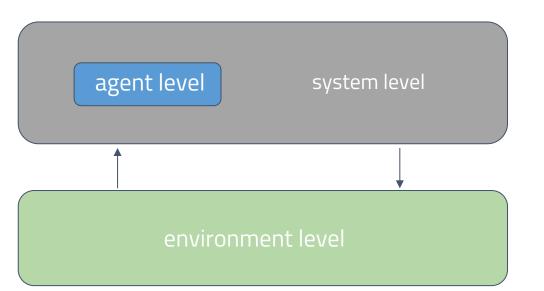
agent level system level

Adaptive maintenance

- The system functioning may degrade at operation time
- The algorithm aims at correcting the system change
- In other case, the system can use a different hardware
- Applications: *manufacturing*

agent level: the agent's goals change or new information is collected

system level: the performance of the system is degrading



Adaptive Al

Adaptivity The algorithm changes its behavior

Why? Several reasons

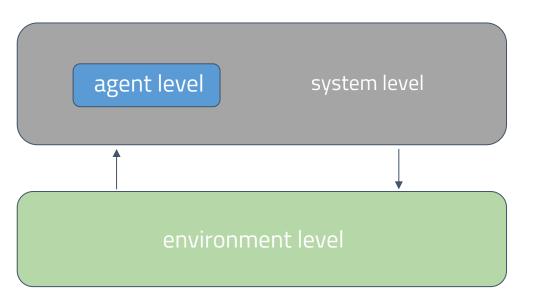
Adaptive maintenance

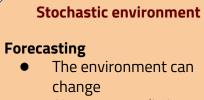
- The system functioning may degrade at operation time
- The algorithm aims at correcting the system change
- In other case, the system can use a different hardware
- Applications: *manufacturing*

agent level: the agent's goals change or new information is collected **system level**: the performance of the

system is degrading

environment level: the environment changes





Adaptive Al

Adaptivity The algorithm changes its behavior

Why? Several reasons

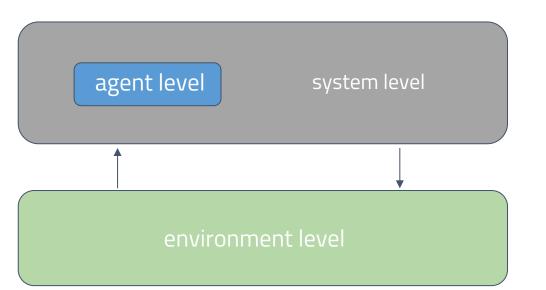
• New state prediction

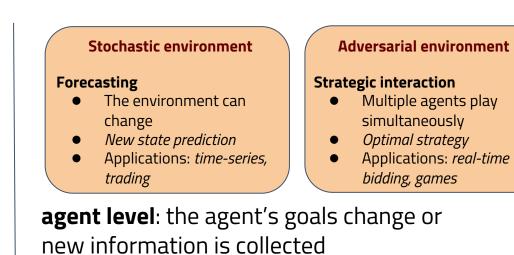
• Applications: *time-series, trading*

agent level: the agent's goals change or new information is collected

system level: the performance of the system is degrading

environment level: the environment changes



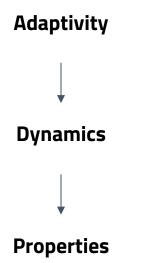


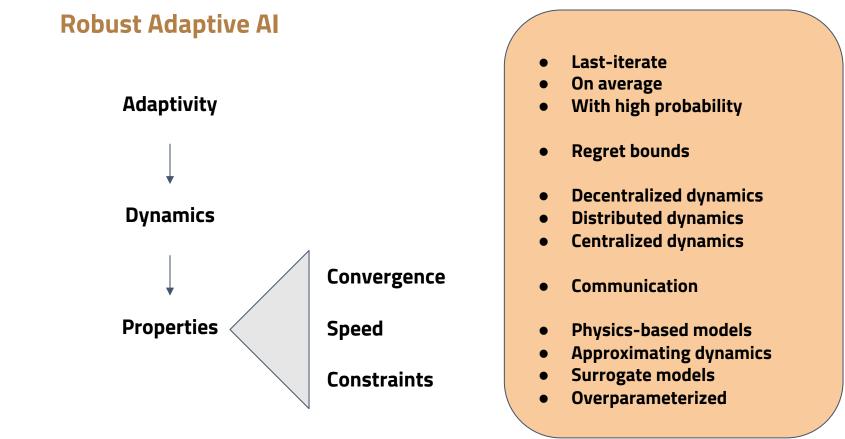
Adaptive Al

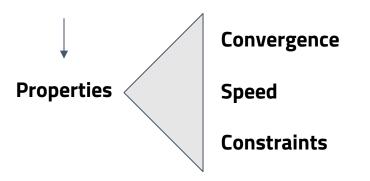
Adaptivity The algorithm changes its behavior

Why? Several reasons

system level: the performance of the system is degrading

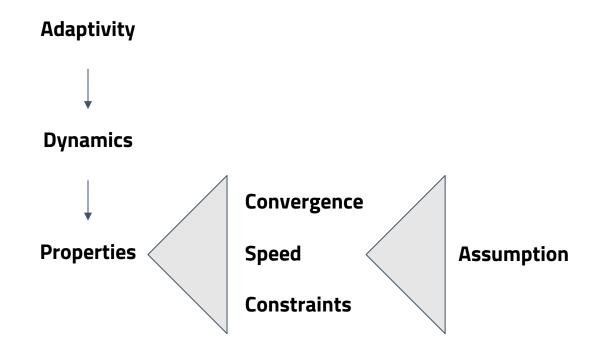

environment level: the environment changes

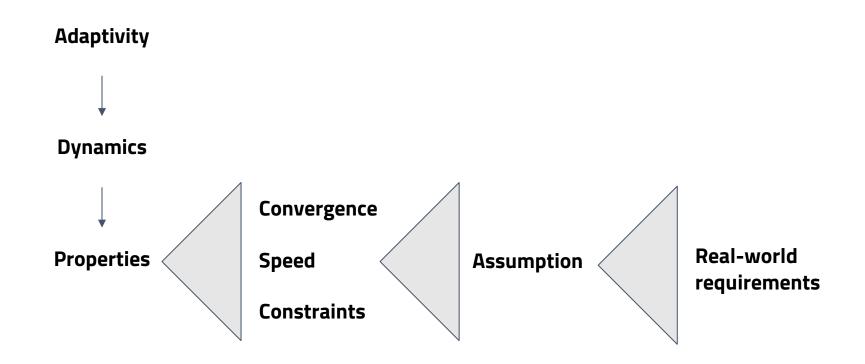




Dynamics

- Last-iterate
- On average
- With high probability
- Regret bounds
- Decentralized dynamics
- Distributed dynamics
- Centralized dynamics
- Communication
- Physics-based models
- Approximating dynamics
- Surrogate models
- Overparameterized


- Reinforcement learning
- Online learning
- Bandit algorithms
- Online convex optimization
- Game theory
- Multi-agent learning
- Deep learning
- Physics-based learning
- Change detection tests
- Computer vision
- Natural language processing



Foundational questions

Foundational questions

Question 4.1 How to develop a unifying theory of single- and multi-agent adaptivity, where adaptivity at different levels (environment, system, agent) are harmonized?

WP4.3 (Zecchina, Cesa-Bianchi, Restelli)

Overparameterized problems

Foundational questions

- **Question 4.1** How to develop a unifying theory of single- and multi-agent adaptivity, where adaptivity at different levels (environment, system, agent) are harmonized?
- Question 4.2 How to develop a machine learning theory to deal with complex non-convex, overparameterized problems?

WP4.3 (Zecchina, Cesa-Bianchi, Restelli)

Overparameterized problems

WP4.1 (Roveri, Dedè, Mezard) Adaptive algorithms in single-agent setting WP4.2 (Amigoni, Schiaffonati, Prandini) Adaptive algorithms in multiagent setting

Foundational questions

- **Question 4.1** How to develop a unifying theory of single- and multi-agent adaptivity, where adaptivity at different levels (environment, system, agent) are harmonized?
- **Question 4.2** How to develop a machine learning theory to deal with complex non-convex, overparameterized problems?
- **Question 4.3** How adaptivity theory can lead to the development of concrete applications?

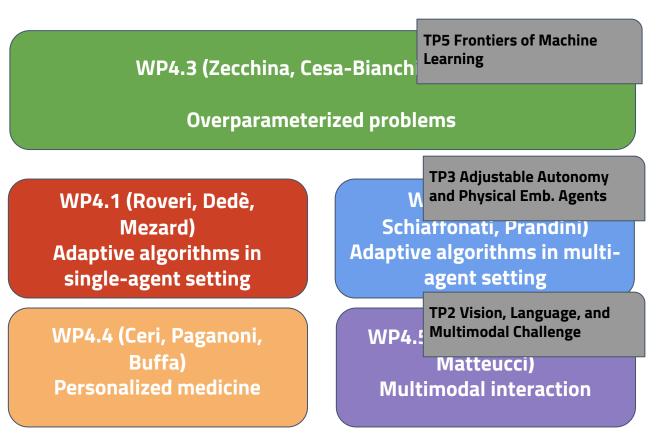
WP4.3 (Zecchina, Cesa-Bianchi, Restelli)

Overparameterized problems

WP4.1 (Roveri, Dedè, Mezard) Adaptive algorithms in single-agent setting

WP4.4 (Ceri, Paganoni, Buffa) Personalized medicine WP4.2 (Amigoni, Schiaffonati, Prandini) Adaptive algorithms in multiagent setting

WP4.5 (Matera, Boracchi, Matteucci) Multimodal interaction



Foundational questions

- Question 4.1 How to develop a unifying theory of single- and multi-agent adaptivity, where adaptivity at different levels (environment, system, agent) are harmonized?
- Question 4.2 How to develop a machine learning theory to deal with complex non-convex, overparameterized problems?
- **Question 4.3** How adaptivity theory can lead to the development of concrete applications?

