Spoke 3: Resilient AI

Sergio Di Martino

Roma, 20 Ottobre 2023
Spoke 3: Partners

Critical mass
36 Professors/Senior Researchers
16 young Researchers
Resilient AI

• AI-based systems are becoming integrated into daily operational environments.
Resilient AI

- AI-based systems are expected to operate in daily, challenging environments, on **real-world data**;
Resilient AI

• AI-based systems are expected to operate even in adversarial environments;
Spoke 3: Resilient AI

• The Spoke 3 is addressing the study of AI foundational methodologies aimed at processing data in-the-wild, making the performance of AI resilient and robust in challenging contexts, based on real-world data.
Scientific Goals

Improve the state of the art in:

1. AI techniques with **incomplete or not adequately representative data**;

2. **Algorithms** that are both **resilient and robust**, also w.r.t. possible external attacks (incl. training with "malicious" data);

3. Design, **verification & validation**, and operation of AI algorithms, when they have to work in-the-wild;

4. **Ethical and legal issues** with real-world data.
Q1: AI techniques with incomplete or not adequately representative data

- Data imputation techniques based on generative models able to produce new data
- Missing modality imputation for Multimodal datasets
- Label imputation approaches for data annotations of large datasets
- Multi-task learning with unbalanced data or missing/noisy labels
Q2: Resilient Algorithms, also to external attacks

- Adversarially resilient machine/federated learning (i.e., able to keep working correctly, despite in degraded conditions)
- Data inspection techniques for preventing violation of confidentiality in ML processes
- Strategic logics for unforeseen events
- Best-effort strategies to face unexpected or overwhelming disturbances
Q3: Design, verification & validation, and operation of AI algorithms

• Automated support for the development of ML pipelines
• Automated Verification of ML-intensive systems (with Automotive applications)
• Explainable and interpretable Human-Centered Intelligent Systems
Q4: Ethical and legal issues

• Determining the Regulatory System
• Picture of the European Independent Authorities and the future one
• AI for compliance with ethical and legal norms
<table>
<thead>
<tr>
<th>(Q1) Incomplete Data</th>
<th>WP 3.1 Creation and annotation of massive datasets</th>
<th>WP 3.3 Resilient multi-task learning on the edge from incomplete and/or noisy data</th>
</tr>
</thead>
<tbody>
<tr>
<td>(Q2) Resilient Algorithms</td>
<td>WP 3.2 Resilient AI in adversarial environments</td>
<td>WP 3.4 Enhanced Resilient AI through data pre-processing and HCI techniques</td>
</tr>
<tr>
<td></td>
<td></td>
<td>WP 3.7 Resilient Strategic Reasoning in AI</td>
</tr>
<tr>
<td></td>
<td></td>
<td>WP 3.5 Resilient multimodal systems</td>
</tr>
<tr>
<td>(Q3) Design, V&V, Operation of AI systems</td>
<td></td>
<td>WP 3.6 Automated Support for Resilient, Dependable, and Interpretable AI</td>
</tr>
<tr>
<td>(Q4) Ethical and Legal Issues</td>
<td></td>
<td>WP 3.8 Ethical, Legal and Societal issues in resilient AI systems</td>
</tr>
<tr>
<td></td>
<td></td>
<td>WP 3.9 Experiment case studies/pilots in challenging domains for Resilient AI</td>
</tr>
</tbody>
</table>
Integrative AI and Transversal Projects
FAIR – Spoke 3 – Resilient AI

• Riferimenti:
 • Sergio Di Martino (sergio.dimartino@unina.it)
 • Massimo Esposito (massimo.esposito@icar.cnr.it)